
AD-AIDi 999 MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF OCEAN E--ETC F/B 20/11
CRUSHING ANALYSIS OF ROTATIONALLY SYMMETRIC PLASTIC SHELLS. (U)

N JUN a1 .J G DE OLIVEIRA, T WIERZBICKI N0O014-80-C-0616
UNCLASSIFIED al-B NL

E17E~hE

EmmhhhhmhhAi



MASSACHUSETTS I NSTITUT OF TECHNOLOGY

DEPARTMENT OF OCEAN ENGINEERING,

CAMBRIDGE, MASS. 02139

© / I .1.,

_CRUSHING ANALYSIS OF ROTATIONALLY

SYMMETRIC PLASTIC.SHELLS•

by

Joao G. Ae Oliveira,
Sand -. 4

Tomasz Wierzbickir t..

Report Number

On leave from the Institute of Fundamental

Technolo cal Research, Warsaw, Poland

t" k L. s
I' ' ' 

- N .

' 7.,. 7 " June, L.981,' " <: j

Lfltr1bution Unlimited

81 7 24 020



INDEX

Abstract.................... .. ... .. .. .. .. . ..

1. Introduction................... . . ... ... .. .. ....

2. Analysis of Discontinuities .............. 6

3. Mechanisms of Plastic Deformation...........9

4. Determination of the Crushing Force .......... 14

5. Tube Inversion.....................15

6. Crushing of Conical Shell...............17

7. Spherical Shell Under Point Load. .......... 19

8. Crushing of a Spherical Shell Between Rigid
Plates.........................25

9. Rigid Boss Loading .................. 27

10. Spherical Cap Under External Pressure Loading ... 29

11. Effect of End Condition...............34

12. Conclusions.....................35

Acknowledgement...................36

References......................37

List of Figures....................40

Figures............. ........... .. .. ..41
Accession oar

Library Card.... . . . . . .... ~ . ..VS 59
FDTIC T*9

Report Documentation Page .J:eio. d..r;4 60

-.Avt1J.b1itY Codes

Dist.

- ALL



-ii-

Abstract

The crushing analysis of rotationally symmetric plastic

shells undergoing very large deflections is presented. A

general methodology is developed and simple closed form solu-

tions which can be useful for practical applications are derived

for the case of a conical shell and a spherical shell under

point load, a spherical shell crushed between rigid plates and

under boss loading, and a spherical cap under external uniform

pressure. The effect of the end conditions and the limitations

of this approach are discussed in detail.



1. Introduction

Thin metal shells of revolution subjected to axisymmetric

compressive forces are capable of carrying substantial loads

when deflections exceed by one or two orders of magnitude the

thickness of the shell, and become comparable to the largest

linear dimension of the structure. Thus, the deformation

process is far beyond what is commonly understood as post-

buckling behavior of elastic or plastic shells. A distinctive

feature of such deformation mechanism is that the strain energy

function (in the case of elastic shells), or dissipation function

(in the case of plastic shells), is concentrated in narrow zones

(fold lines or hinge lines) while the remainder of the struc-

ture is undergoing a rigid body motion. Furthermore, with some de-

gree of symmetry, the fold lines are forced to move as the deforma-

tion process goes on. Depending on the geometrical parameters

of the structure and imperfections, either a symmetric or un-

symmetric deformation pattern may develop, even though the loading

and the structure itself are axially symmetric.

A known example of non-symmetric but regular deflection field is

theYoshlrura buckle pattern in compressed thin elastic shells. In

the range of very large deflections, the geometry of such a field

can be conveniently described using the concept of isometric

transformation of surfaces. The foundations of the respective

mathematical theory were laid by Pogorielov, (11, who also

presented brilliant applications of his theory to the analysis
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of post-critical behavior of thin elastic shells, [2]. His

work was later followed by Lukasiewicz and Szyszkowski [3],

while Foster [4] presented a parallel but independent study

of the compression of thin tubes. Pugsley and Macaulay

appear to be the first to study the crumpling process of

thin cylindrical shells with diamond shape lobes in the plastic

range [5]. Although no provision was made to accomodate in

the theory the travelling hinges, the corresponding calcula-

tions for the mean crushing force, especially the more recent

ones [61,agree well with experimental results. Further contri-

bution to the understanding of the process of progressive

crumpling of tubes in the multi-lobe modes was made in [7]

and [8], but no satisfactory solution of this interesting problem

was offered to date.

As tubes get thicker (R/h < 50), a well-known transition

takes place from the diamond pattern to the crinkling (concertina)

mode of deformation, discussed by Alexander [71. Assuming a

simple deformation mechanism with circumferential extension

and equating the rate of internal energy dissipation to the

rate of work of external forces, he was able to calculate an

average crushing force. Minimizing next the force level he

evaluated the length of the local buckling wave, and derived a

simple expression for the optimal value of the crushing force.

The above procedure has proved to be most effective in the

approximate analysis of the crumpling process of various thin-

walled structures [8,101.
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The tube inversion (outside-in or inside-out) is another

example of an axially-symmetric deformation of tubes. Two

solutions for the magnitude of axial loading necessary to main-

tain the plastic flow are available. One, due to Al Hassani

et al. [101, is good as long as the assumption of a constant

thickness holds, and another one, due to Abramowricz [II, takes

into account changes of thickness and circumferential curvature.

The problem of hemispherical shell or spherical cap loaded by

central point-load, rigid boss, or crushed between plates, received

much less attention in the literature than the related buckling

problem under external pressure loading. Updike and Kalnins

performed a thorough analysis of postbuckling behaviour of

elastic spherical shells compressed between rigid plates, [12,

133. Using Reissner equations for shallow rotationally symmetric

shells, they determined the force-deflection relationship in

subsequent stages of deformation, and the point of bifurcation

into a symmetric inward dimple, and later into an unsymmetric

shape. In the subsequent study (14] Updike presented an approxi-

mate solution for the rigid-plastic shallow shell undergoing

symmetric deformations. An extensive theoretical and experi-

mental investigation into this problem was made by Kitching

et al. in (151, where the transition into an unsymmetric plastic

mode was calculated numerically. Experiments in which polygon

rather than circular circumference dimple were observed, were

reportedly made earlier by Pian [91.
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Leckie and Penny [161 performed a series of tests on

carefully manufactured hemispherical shells loaded centrally

by a rigid boss. These experiments were followed by a theoretical

study due to Morris and Calladine [17], in which the deformed

shape of the shell and the force-displacement characteristics

were obtained by a sequence of upper bound calculations, in

conjunction with an ingeneous idea of treating the shell as a

three-dimensional body, (181.

The work of Morris and Calladine consititutes a milestone

in the understanding of the crushing behaviour of shells of

revolution. It shows through relatively simple numerical cal-

culations that plastic deformations are indeed confined to a

relatively narrow ring or section of a toroidal surface, and

that the ring is moving outward as the deformation process

goes on, leaving a rigid region behind. A snap-through effect

was observed whose extent depends on the boss size .

The plastic behaviour of shallow spherical shells under

uniform pressure loading is similar to that of a shell under

rigid boss loading, as far as the occurrence of the plastic

snap-through phenomenon is concerned. This problem was studie&

by Puszek [191 and Jones and Ich [20], using an approximate yield

condition for rotationally symmetric shells. Recently, the

same problem was reconsidered by Kondo and Pian (21] by applyinc

the generalized yield line method, which takes into account

the changes in the geometry of the structure.
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In the present paper ,e shall extend the approach developed

in [71 and [171 to general shells of revo±ution, with the

purpose of deriving some simple results useful for practical

purposes. A detailed discussion will be presented on the

restrictions imposed on the solution by the conditions of

kinematic continuity on the moving hinge circles, and inextensi-

bility of the shell in the meridional direction.. Introducing

simple displacement and velocity fields, closed-form solutions

on the crushing force will be derived for a variety of struc-

tures, including conical and hemispherical shells compressed

between rigid plates, and a spherical shell under a point-load

or central boss loading. The influence of the boss size,

and clamped edge conditions will also be discussed at

length.

The analysis will be restricted to axisymmetric deforma-

tion modes only. A simplified approach to study the lateral

crushing of cylindrical shells using a polygon shaped fan of

flat elements was developed by Morris and Calladine [221.

This method is particularly suited for treating nonsymmetric

but regular deformation modes in hemispherical shells such

as the ones observed by Pian [ 8 1. The treatment of non-

symmetric problems with smooth deformation fields will be

the subject of a future publication [231.
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2. Analysis of Discontinuities

The condition of kinematic continuity on the moving hinges

or hinge circles in rigid-plastic beams and flat circular plates

were formulated by Hopkins [24] and Hopkins and Prager (25].

Before writing the continuity equation for a general shell

consider first the one-dimensional case, since the physical

arguments leading to these equations are the same.

Let F denote a straight line yield hinge whose position

on the flat surface element is described by a scalar equation

x = v(t). The downward deflection and velocity of the material

point lying on the shell middle surface are denoted respectively

by f(x,t) and f(x,t). We assume that deflections and velocities

are continous at any time and at any point of the shell.

Since the deflection f is continuous across F, the time deriva-

tive of f(\(t) ,t) along F is also continuous across F. Thus

[f] + V (t) If'] = 0 (i)

where the brackets denote discontinuties, if any, of the enclosee

quantities across F, i.e. [n] = n+ - n_. Now, f is continuous across

F and Eq. (1) therefore shows that the slope f' can be discontinuous

only across stationary yield hinges, for w;hich v(t) = 0. If the

yield hinge F is not stationary, then f' must be continuous across

F. By repeating similar arguments one can show that

if'] + V(t) If"] = 0 (2)

provided ) (t) # 0.
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Consider now a hinge line moving with a constant velocity

V(t) = V down the undeformed flat surface element

leaving a plastically deformed region, Fig. 1. The rate of

rotation and curvatures on both sides of the moving hinge are

respectively f+ = e, f' = 0, f" = <, f_ = 0. Now, Eq.(2)

reduces to

e + VK = 0 (3)

We can see that the moving hinge line imposes a constant
1

curvature < = I on the initially flat surface element if the

slope of the velocity field e is related to the hinge velocity

by (3.

Return now to the general case, following the derivation

presented in [111 and consider a curved discontinuity line 1

moving down the middle surface of the shell X. The line r

is dividing the surface X into two separable parts

(+)XU ( X. Then X denotes the deformed part, subjected

to plastic deformation. The vector field f is defined over the

entire surface X. Now, the previous analysis still applies

except that the first and second derivation of f in (1) and

(2) should be replaced by the evalutation of the first and

second gradient of f on the surface X. This is equivalent

to the replacement of partial derivatives in (1) and (2) hy

covariant derivatives, so these eauations now read

[i] + Vn [fiJna = 0 i = (1,2,3} (4)

[fi] + Vn  i ]nn = 0 , ,y,rS = {1,2} (5)

~ ~ ~ ~~~~~~~t + Vn lI" I-: : , .. b i ' .. ... "
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where n is a surface vector normal to the discontinuity line

F, while Vn denotes the velocity of the hinge line in the n

direction.

Considerable simplification can be obtained in the case

of rotationally symmetric shells. The hinge line becomes now

a circle and each of the continuity condition (4) and (5)

yields only one scalar equation in the meridional plane

[f] + Vn(f, ] = (C)
n CL

If, + V n[f, ] 0 (7

where If,a I is a jump in the rate of rotation and [f, I is

the corresponding jump in the principle (meridional) curvature.

Take now an intermediate stage of the crushing process

1:here plastic deformations are confined to a relatively narrow

zone contained between an inner and outer hinge circle B and C, Fig. 2.

The outer hinge circle B moves down the undeforred shell with a

velocity VB imposing a larger curvature, i.e. changing the

local radius of curvature from RB to r.. !lie material in front

of the hinge is rigid and undergoes a constant and finite rate c0

rotation 0. Thus, the continuity condition reduces in this

case to

-WB + VB ()

The inner hinge C is travelling with the velocity VC and removcr

the curvature, or strickly speaking, it changes the small radiuF

of curvature rC back to the large one RC. 77e can then write
Ci
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a similar equation to (8) expressing the continuity constraint

C(_ L (9)C C rC  C

For the material behind the circle C to be rigid, the shell

should translate rather than rotate. Hence, there must be at

C a counterrotation C of the same magnitude as at B. The

condition wB=WC '-implies the following relation between the six

kinematic and geometric parameters of the problem

_VB( r) VC~r )Ci-B  ( - r. rc (iRt)

Equation (10) can be further simplified. If for example the

deflected shape of the shell is assumed to be isometric to the

original one, it must be its mirror reflection i.e. RB RC

see [1]. Furthermore the shape of the shell middle

surface between the hinge circle B and C may be approximated by

a section of a circular toroidal surface so that rB = r = r,C

as suggested in [14,11].

Equation (6) carries the informaticr. that the shape of shell

at B and C should be continuous at all tirmtes, except at the

stationary hinge, i.e. at the rigid boss or clamped edge.

In the next section we shall see whether conditions (6)

and (10) can be made compatible with other simplifying

assumptions regarding the kinematics of the crushing process.

3. Mechanisms of Plastic Deformation

The foregoing analysis has shown that there are two con-

centrated plastic hinges at B and C and that the cross section
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between them rotates as a rigid shape with an angular velocity ,

as the displacement of the shell increases. Our aim is to evaluate

the internal energy dissipated in such a modn of deformation.

Equating this energy to the rate of work of external forces

an instantaneous crushing force can be found necessary to

maintain the plastic flow.

The dissipation is due to a discontinuous velocity field

at plastic hinges, and to a continuous deformation field in the

shell section between B and C. Consider first the latter

In rotationally symmetric shells there are four components

of the generalized strain rate and stress fields. The meridional

curvature rate K is infinite at hinge circles and vanishes

between them. This follows from the aszur-rtion that the rate

of rotation is a step function.

It should be noted that the meridional curvature itself

<3, governed by (8) is kept constant at any material point

passing through the plastically deforming annulus, but does nct

have to be constant along spatial coorOdinate between B and C.

The circumferential curvature rate Ke is continuously

changing between B and C from pocitive -L through zero to negative

1 RB
P-cand consequently some energy is dissirated in this deformation

mechanism. An exact formula for Ke was derived in [i] using

a rigorous Eulerian description. In the sane paper it was

shown that the associated energy dissipation is a small fraction

of the total energy.
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For the sake of simplicity we shall disregard K in the

equation for the energy dissipation. A very good estimate of

the contribution of K to that energy can be given in a

straightforward manner.

Suppose the circumferential curvature is reversed between

B andC from 1to - The rate of work done is twice
R R 1

the energy required to remove the curvature from to zero.

The curvature is removed by rotating two ends of a cut circle

through the angle 27, (cf. [2E]). Thus, the rate of energy

in the considered mechanism of deformation can be approximated

by:

E(Ke) 2 (27) MoV = 4M (1i)

where it was assumed that there are no interaction between the cir-

cumferential bending moment and the remaining non-vanishing

components of the generalized stress field. The velocity V in

(11) is an average downward velocity of the deforming zone,

V = w ; see Fig. 3.2

At certain stages of the crushing process considerable

meridional membrane forces may be developed. In the present

paper the meridional extension rate is assumed to vanish in

the zone of continuous deformations. Any extension or

shortening of the arc length in the meridional direction is

accormmodatedby the hinge circle B and C. Thus, we do not

require inextensibility of the material in the meridional

direction but instead extensional plastic hinges are intro-

duced. This assumption is in the spirit of Calladine',: approxi-

mation in the problem of moderately large deflection of clampee

circular plates [18].
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The only significant component of the cgeneralized strain

rate is the circumferential compression X In order to calcu--

late the associate dissipation energy we shall strictly follo-,

the approach developed in [17], and treat the shell section

between B and C as a three-dimensional Lody. The rate of internal

energy dissipation is equal to

E = fyoa dV= 27TfsdS (II)

V S

where V and S denote respectively the tctal volume and area

of the cross section between B and C, and , denotes a current

distance of the given point F from the axis of symmetry of the

shell, see Fig. 3. Note, that the yield stress is positive in

tension zones and negative in compressicn zcnes. The circumfer-

ential strain rate is given by Le = -where y is the current

distance fror the axis of instantaneous rotation I-I. The

position of this axis with respect to the '..ell cross section

is yet to be determined. Substitutinc E: in. (12) yields

Ein t =2row fyldS (12)
S

One has to distinguish now two special cases. If the rise of

the toroidal surface over the points L anc.C is comparable

to the shell thickness, the assumption ahout non-uniform

distribution of C8 across the thickness is justified, and (13)

holds. If the converse is true, one can. replace dS = hdx, and

(13) simplifies:
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F = 2,T h fyldx (14)

iht BC

The integral appearing in (14) is the area between the

middle surface of the annular section of the shell and the

axis of instantaneous rotation, as noted in [14].

The energy dissipated in any of the two plastic hinges

is
h

E disc f T adyfE.n = 2 dy = 2z~ Cydy(1)
int J oe awho,

- 2

where a denotes the position of the hinge with respect to the

axis of symmetry, and u8 is in-pl~ne component of the velocity field.

One can easily evaluate (15) as a function of the position of

the center of instantaneous rotation with respect to the middle

surface of the hinge :

for = 0 (16a)

disc 2h 2  h
F 2 2 + < < h (16b)
int o 4 2

h
h for > L (16c)

In the present approach the hinge circle is indeed a

generalized plastic hinge analysed for example

by Jones [27], since either bending or extension or both can

be devleoped in it.

The total dissipated energy is the sur of energies

dissipated in continuous and discontinuous dissipation fields.
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4. Determination of the Crushing Force

In the actual solution the rate of change of external work

is always equal to the internal dissipation energy. A similar

equality for any kinematically admissible velocity and dis-

nlacement field can be understood as a definition of the approx-

imate value of the external loading. The more close the

assumed fields are to the real one, the better the approximate

solution is. A considerable success of thi methcd in predicting

the crush behavior of various thin-walled structures (see [7,15])

is due to the correct choice of the admissible field with few

free parameters, and also to a somehow weak dependence of the

solution on the details of the assumed share of the shell.

For example, any shape of the shell middle surface between

inner and outer hinge circles, satisfving kinematic continuity

and giving the same area in (14), would yield the same force

level. In the present paper we shall take the shape of the shell

middle section in the form of a circular or parabolic arc.

Furthermore, we shall assume the deformed but rigid portion CD

to be a shifted mirror reflection of the original shape AB

(doted line on Fig. 2) by a magnitude b. This implies opposite

but equal in magnitude radius of curvature and slopes at points

B and C. From the continuity of displacerents and slopes at

B and C, it follows that the transition shape is determined to within

a single parameter which in either the distance between points

B and C, or local radius of curvature r. Another free parameter

is the position of the axis of rotation .
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The rate of work of external loading is

b *
P W - for crushing between plates (17a)

Pbw - for point load or boss loading (17b)

Now for any given value of the parameter describing the

crushing distance (for example central deflection or central

radius of the annular zone), the integral (14) is evaluated and

the value of the force P becomes a function of two free para-

meters and b.

The function P( b,E) was studied and it was found that for a

certain value of b, the force attains a minimum. Cn the other

hand, except at a very early stage of the crushing process, P

attains a lower limit rather than a minirum , with respect to

=O0, Fig. 5.

Assuming the minimum principle to hold for geometrically

nonlinear problems, the lowest possible value of P is identified

as the best approximate solution. This approach is equivalent

to the sequence of upper bound numerical calculations performed

by Morris and Calladine [17]

5. Tube Inversion

The approximate solution of the stationary plastic process

of tube inversion with various degrees of approximation can be

found in [11] and [15]. We shall study the same problem to explain

the details of the derivation and to determine the accuracy of

the present approach by comparing it with known results.
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Consider a tube of the initial radius R being inverted

inside out to a final radius R + 2r. At the hinge circle B

the straight line generator of the cylinder is bent into the

curvature 1 and at the hinge circle C the curvature is re-r

moved, Fig. 6. A simple and yet accurate solution of this

problem, accounting for continuous circumferential extension and

concentrated bending at B and c,was worked out by Kitching et al. [151

and has the form

P min 3r J
2M4 = 4 6.92 E; r = (I?)

0

Tn order to apply the present approach, wqe assume that the

:,ortion of the shell between hinge circles 13 and C form one

nalf of the toroidal surface. We also assure for simplicity

that r/h > 1, so that Eq. (14) applies an : 0. The distance

between B -an C is h = 2r and the integral appearing in (16)

represents the area of the half circle. Usinlg this result and

Eq. (15), the rate of energy balance equaticn yields

• z 2  .h2

Pr w = 2.,oh- - + 
2 7a 0o - [R + (r,+2r)] (1:)

The rate of infinitesimal rotation w drops out from both sides

of (19) and the dimensionless force becomes

P = 2 [T r +  i (C)
2 -, M L h r j

Minimizing the right hand side of (20) with respect tc r and

3ubstituting the optimal radius back into (2C) we can obtain

the final formula:
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~min iR 2Rh9/.
4 + 2 7.09 + 2; r (21)

The above results compares well with solution (18), especially

for large R/h.

It is interesting to estimate the effect of the variable

circumferential curvature, according to the approximate formula

(11). One can easily find that the magnitude of the non-

dimensional force in (21) increases then by 2, which again is a

small contribution for large R/h. At the same time the optimum

radius of inversion remains the same.

It can be checked that the condition (10) of kinematic
VB  VC

continuity, reduces now to - = - and thus is satisfied.

Finally it should be noted that the crushing force of a

tube loaded by a central force rather than cru'shed between

plates, is one half of that predicted by (21)

6. Crushing of a conical shell

The geometry of the partially crushed conical shell is shc-r

in Fig. 7. We assume that the portion of the shell subjected to

localized plastic deformation forms a section of a toroidal curface

and that the inverted cone is of the sa'e angle a. The area of
r 2

the section of a circle between the points E and C is S = 2- [(7r-2a)

- sin(Tr-2a)] and the distance b = 2rcosa. It is now straight-

forward to work out the solution which takes the form

Pin (m i ;1 ( r 2 t) s n T -a 2 '
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r ha

(iT-2a) - sin(n-2a) (23)

Here a is the measure of the crushing distance, which is related

to the central deflection by

2a w = (24)
tans

The formulas become increasingly inaccurate for a + T and

also for small 2, since then the assumptions leading to = 0

are not satisfied. In these cases a more exact solution can

be obtained when needed, using (13) rather than (14) and

minimizing the solution with respect to .

Equation (23) predicts an increasing radius of the toroidal

surface, r > 0, as the crushing zone is expanding. The change of

the radius is related to velocities of hinge circles by

2 = (V B-V C)tana (25)

At the same time we have assumed that RB = RC = 0 and rB = r

which yields VB = VC . We see that the condition of kinematic

continuity is not satisfied by the present solution. The

difficulty encountered can be overcome by considering the general

case in which rB 3 rC  RC C . Now, the toroidal surface ceases

to be of a circular cross-section and the hinge circles B and C

will no longer be positioned on the same level. As a result

membrane force will develop in the hinge C which would result in

a slight increase of the force level. Also, with a variable

radius R (a) the hinge circle will produce a curved line rather than a
C

conical one on the meridional Qlane. It is not difficult to write
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a system of ordinary differential equations with a shifted

argument describing variation of VB VC  r B rC and RC with

the crush distance. We shall not attempt to study this sytem

since it is believed that insiginificant changes would have then

been introduced to the solution. The problem however is

interesting by its own right.

7. Spherical Shell Under Point Load

This problem has been analysed in [27] but as we shall

see, its range of validity is very small. Morris and Calladine

[17] evaluated the force-deflection relationship for a particular

shell with R/h = 60 up to a deflection ratio w/h = 6.

Let the current position of the outer hinge circle on the

shell be defined by the angle a, see Fig. 8. The distance between

the two hinge lines b is related tc the radius of the toroidal

surface through b = 2rsina. The expression for the crushing

'force, derived in an analogous way as in the case of a conical

shell, has the form

min R
Er)0 - (26)

r2  hR (27)

2a - sin2(2
where q = sina (28)

From purely geometrical considerations we can derive a rela-

tion between the angle a and the crush distance w

w R

w = 1cs. R1 - hsn~I(9h-
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Equations (26) and (29) furnish a parametric representation of

the function force versus displacement. A plot of this function

for several values of the radius to thickness ration R/h is shown

in Fig. 9. The dependence of the solution on R/h appears to be
h

weak. Indeed, treating g as a small parameter and expanding the square

root in (29) in po'-er series r.ith respect to h arcund h = 0 one getsr r

2 2
1- sin a 12sin ah1 4 1 - R (30)

co that (29) can now be approximated by

2 (l-cosa) - 2 s i n 2

Combining next (26) and (31) to eliminate the parameter R/h

we obtain

w 2i
w 1 -c nsc) - 2 (32)

F (2 07 Tn (e, I n(C-)

Expanding the trigonometric function apiearing in (32) in power'

series and retaining terms up to the third -power, the two

coefficients in (32) become

1-cosa 1 2sina - sin2a J (33a)
2n (a) 4 2a - sin2a 16

2sin 2a 2sin 3a _3 a (33b)
r 2a - sin2a-o \.()

Thus, the first coefficient turns to be constant, while the

second varies very little which a, especially for a < 1. Sub-

stituting (33) back into (32), the final formula for the force-

dieflection relationship takes the form
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w 3 Pmin 3_ + -34)

The plot of the function (34) is given in Fig. 9 by a broken

line. The agreement with the exact solution (full line), which

depends on R/h, is seen to be very good.

It is interesting enough that the same solution can be

obtained by making a different set of assumptions. Suppose the

hemispherical shell is approximated by a parabolical shell. The

relationship between the angle a and central deflection is now

given by

w R 2 b 2

h h sin a 2hR (35)

Replacing likewise the circular cross-section of the toroidal

surface by a parabolic arc

(2 - x2

Y = 2r (36)

the area intecral in (14) can be readily evaluated, and the

expression for the crushing force takes the form:

P 2 b 2R sina 1 (37)
2 =M0 =T sina + b

optimization the right hand side of (37) with respect to b

results in

b 2 = 3hR (38)

Now combining (35), (37) and (38), the expression (34) for the

crushing force is obtained in the same form as before. This result is

important from the practical point of view, since the mathematics
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involved in the alternative derivation of (34) are nuch simpler.

We shall take advantage of this property, and in the remainder of

the paper dealing with spherical shells always replace a circle

by a parabolic arc. Note that by doing so the condition of con-

tinuity of slope of the displacement field (6) is not satisfied,

but as we have seen, the solution is hardly affected by this.

The second continuity condition (10) reduces now to

VB 1 -VB = R (39)
Vc 1 + r

R

::hich means that IVBI 9 IVCI. On the other nand formula (38)

in the present solution implied that b 4 0. Recalling that

b (VB - VC ) cosa, we have IVBI = IVc1, which contradicts the

condition-of continuity. A consistent set of equations can

e written, as discussed previously. However, the resulting

'olution, which apparently looses its apFealing simplicity,

is believed to introduce insignificant changes and thus will not

be discussed further.

The present solution with two moving hincjcs becomes increas-

ingly inaccurate with decreasing value of the parameter a. Two

factors are responsible for that. First, at an early stage of

the crushing process, only one hinge circle is formed and the kine-

matics ot the process does not involve a free parameter to be opti-

mized. Secondly, for small Y the portion of the toroidal shell

becomes relatively shallow so that the assumption leading to

= 0 is no longer valid, and the shell should be treated as a

three-dimensional body, according to the method developed by
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Calladine [181. 'ie shall study these two cases separately.

Assume that the radius of the inner hinge is zero. From

simple geometrical consideration Fig. 10, it follows that

b = R sine , R = 2r (40)

Introducing (40) into (35) and (37) and eliminating R/h we

obtain the following force-deflection characteristics

P 4 w
2;M = F + 1 (41)

which is identical to the one derived in [271. The function

(41) represents a straight line intersecting the curve described
w 3

Ly (34) at H = 1, Fig. 11.

Return now to the general case of the shell in which the

internal energy dissipation is governed by (13) and (16b). We

assume that (40) holds, and that the shape of the shell middle

surface represents a parabolic arc. The energy balance equation

can be written in the form
b

Pb = 27Co '2  ydy + ydy dx +b + 2b) 27ro (42)

0 0 0
-here yI and yII are respectively the uprer and lower contour of

the shell cross-section, measured from the axis of instantaneous

rotation, see Fig. 4. 2I
_(L) 2 2

S 2 - -+ h(43a)
R R 2
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2  2

yI = L) _ + h +  (4 3b)
R2

The integrals in (42) can be readily evaluated and the

crushing force becomes a function of a single parameter

P =2 + 8  '(' - + 8 (44)
2hM 3  Rh 15 Rh

0

Introduction (40) into (35) we obtain a unique relation

between the radius of the hinge and central deflection

w _L
2

- (45)
h 2hR

The minimization of the right hand side of (44) yields an

optimum value of the parameter

Sb 1 w(46)
E 12Rh E 6 h

Substituting (45) and (46) back into (44) we finally obtain

= 2 + 2 (47)

0

The above relation is depicted in Fig. 11 by a solid line.
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Ecuation (47) is valid as long as the line of instantaneous

rotation first touches either the inner or cuter contour

II w 3
Scr y. This first occurs at h 2 Ths, the

range of applicability of both solutions appears to be the same.

The formula (41) is easy to evaluate but it gives unsatisfactoy

results for w/h = 0. This will become even more evident in the

problem of a shell loaded 'y a rigid boss. !n the other hand, the

solution (47) predicts correctly the yield point load but the

mathematics involved are much more complicated.

The 4% difference between the functions (24) and (47) at

w/h 1 3is attributed to the fact that the forrer involves the
2

simplifying assumption = 0, while the latter not. By con-

tinuing the exact calculation beyond that point, the correspondinQ

,clution (doted line in Fig. 11) would radually converge to the

curve representing the formula (34). The thin full line in the

same figure denotes the Morris and Calladine numerical solution.

Unfortunately, no information was given in 1171 on the magnitude

of the integration step employed so it is difficult to aspess

its accuracy. A good agreement of both solutions is observed

over the entire range of deflection covere6 O the Porris and

Calladine solution.

Z. Crushing of a Spherical Shell Between Rigid Plates

The procedure for solving this problem essentially follows

that presented in the preceding section, except that now the

rate of external work should be computed according to (17h) and

the relation between w and a is different. As before,
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the analysis follows several stages. The yield point and post-

yield behavior is accurately predicted by the formula

P 2
2 = 4 + M (48)2 TrM2h
0

w 3valid for t < In the later stage of the crushing process,

when the inner hinge leaves the shell axis, the plate displacement

is related to the angle a by

w R .2 h

h - sin a - 4-- sina (49)

The optimum value of width of the deforring radius is the same

as before b = V3, Equation (38), and the resulting force-

deflection relationship takes the form

w 2) P .12 _ 3 ( P 1 2) (50)

The above solution is valid theoretically until the crush

distance reaches the shell radius w = R. it is interesting to

compare the formula (50) with an approximate solution due to

Updike [14]:

h48 P\ 2(51)

which was believed by the author to be valid for deflections

not exceeding about one tenth of the shell radius. When both

solutions are plotted, it is seen that a relative difference

between them is small over the entire range of variation of w,

Fig. 12.
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9. Rigid Boss Loading

Leckie and Penny performed a series of tests on carefully

manufactured spherical shells with R/h = 60 and variable boss size

(16]. They observed that with increasing downward deflection

the crushing force for a given radius of the boss p reaches a

maximum, then drops suddenly as the shell buckles, and starts

to rise again. They also found that the initial plastic yield-

point load depends markedly on a single geometrical parameter

= -P- (52)

but with increasing deflection this dependence is much less

pronounced. However, the tests were not run far enough to decide

whether all P - w curves did converge to a single one.

Assuming a rigid perfectly plastic material idealization

Morris and Calladine [17] were able to predict accurately the

initial response of the shell. Their numerical calculations have

shown that while the slope of the load-deflection curves becomes
w

the same for H > 2, the curves corresponding to different

3 are considerably shifted with respect to one another.

It is reasonable to expect that the effect of the boss

size is a local one and should be almost entirely "forgotten"

by the shell at later stages of the deformation process, so that

all curves would eventually converge. Indeed, the deformation

mechanism with expanding ring of plastic deformation is the same

as before, except that the reference point for measuring deflec-

tion changes with the boss size. This gives rise to a new term



-28-

in the force-displacement relationship

w 3 P + 3 (53h1[6 2~~ o 22 (53)
N 6(2M0 /

The above solution reduces to the one describing the shell

under central-point load (formula (34)) by setting g = 0. The

new term is relatively small, and provides a shift of P - w

curves in the w/h direction Fig. 13. The horizontal disnlacemnent of

P-; curves in the numerical solution reported in [17) for the same

values of 8 are much larger, which is probably attributed to

the trial and error optimization procedure employed.

We were unable to derive a simple closed-form solution for

the initial phase of loading based on the exact formula (13)

showing the nature of the convergence. However, the interesting

pattern of behaviar of the shell associated with plastic snap-

through can be described, at least qualitatively using the

approximate formula (14). Assuming that a stationary hinge circle

is formed at F = p and the moving one at!'= p + b, the load-

deflection relationship was found to be

p 2 w+ 2 1 + _ _- + + 2- + 1 (54)w+ 2

The above solution reduces to (41) for 8 = 0 but it leads to anw
unrealistic infinite force magnitude with - 0. This is a

consequence of the assumed symmetric geometrical shape of the

shell cross-section (36) with zero initial width of the plastic

zone to initiate the motion. In reality, the shape is unsymmetric

with finite width. It was possible to derive an approximate

expression for the initial yield-point load (;:/h = 0) in the form:
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P 8B, b = 1"Rh Rh (55)0 -3 2

The plot of the function (54) with (55) for several values of

the parameter is shown in Fig. 14.

10. Spherical Cap Under External Pressure Loading

Consider a simply supported spherical shell with base radius

a, and rise H, Fig. 15. The shallowness of the shell is described

by the parameter

2
a H

= 2h- =  
(56)

Following Ref. [21] define the total load P and the reference

load Po by

P = 7pa 2 P = 6rM0  (57)

where p is a uniformly distributed downward pressure. It is

relatively easy to derive the load-deflection relationship for

any value of a, using the present method. We shall however

restrict the analysis to the limiting cases of small and large

A. Consider first the case a >> 1 for which equation (14) applies.

Suppose the outer boundary of the plastically deforming zone BC

is b while the portion AB remains rigid. The assumed velocity

field consist, as previously, of the rotation around the point B

w(x) = (x < b < a) (58)

This rotation imposes a continuous change in the initially

circular shape of the shell middle surface. If the central

deflection is smaller than the rise of the shell above the

b
2

circle b, w < -, the current shape can be approximated by
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the parabolic arc.

_2b 
2 / 2 Ix 2

y(x) = - + w) (59)

For the time being we assume the plastic hinge circle to be

located somewhere between the shell center and the support

0 < b < a. Equating the rate of external work to the energy

dissipated in the region of continuous deformation and plastic

hinge circle one gets

7T pw(x)xdx 27ha y(x) dx + 270 -- b 160)

or after integration

p IS 8 3 h +  1 (61)
P_ aO 3 3h

0
- 2

where b= We can see that for the force to be a minimum

one has to consider the largest possible value of F, i.e. b = a.

With the assumed simply supported boundary conditions there will

not be any contribution of the concentrated hinge to the total

dissipation energy, and the last term in Eq. (61) should vanish,

giving the final expression for the force deflection characteristics

P 8 4wP 8 4-3hfor w < a (62)
0

In particular, the initial yield-point load is obtained from

(62) by putting w = 0, P/Po = 8/3a. A plot of the above formula

is undistinguishable from the curve representing the much more

complicated solution derived by Kondo and Pian (211, Fig. 16

At the other extreme we have very shallow shells in which

the line of instantaneous rotation lies within the contour of

the shell cross-section, Fig. 4. This implies a < 1.
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Assume that the shape of the shell middle surface is

changing with deflections according to Eq. (59). The energy

in the continuous deformation field is given by

Econt. = 2O f f ydy + ydy dx (63)
0of 

of

where the limits of the integrals appearing in (63) are

yI Y + h (64a)

II h 6b
y -y + + 64b)

The expression for the energy dissipated at the outer hinge

would depend on the position of the hinge circle. If b < a,

then the boundary conditions do not have any effect on the

solution and Eq. (16b) applies. If the plastic zone extends

up to the support, b = a, then for a simply supported shell

restrained from axial motion, the term responsible for bending

vanishes

h2 $ 1 if b < a
Ehinge = I.T+ , k = 0 if b = (65)

The left hand side of the energy balance equation is the same

as before (60), while the right hand side is a sum of (63) and

(65). Evaluatina the integral, one obtains

-_ - - -+ ) + 32 -2 5 12- +q + 2 T2 -(2b - q) (66)

0

f where T q =w

h h
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After minimization with respect to t, the formula (66) becomes

P +n 56 -2 _ 68- 26 2
P(1 + n) 4 F q 45 q (67)

0

The load-deflection curve, represented by (67) is dropping
with increasing b and dttains the lowest position when

-2 45 26 2 (68)b2 (1 + rq) + - (68

For example at q = 0, the optimum value of radius of the outer

hinge is b = 1.3, falling beyond the range of applicability of

the present solution, which is b < a < 1. Consequently, the least

value of the crushing force is obtained by taking the largest

possible radius, i.e. b = a. We have thus shown that for shallow

shells the zone of continuous plastic deformations is extending

right up to the support. Substituting n = 0 and ai b into (5),

leads to the following force-deflection relation.

P I 56 2 68 26 2PO 1 . 5 a q + q  (69)

In particular, the initial yield-point load is given by

-- + 56 L 2 < 1 (70)

0

In deriving Eq. (69), shell deformations both in radial and

circumferential directions were taken into account. A relative

contribution of the two components of the dissipated energy is

controlled by the position of the axis of instantaneous rotation I-I.

The optimum position is one which minimizes the magnitude of

the pressure required to maintain the plastic flow. It is

interesting to note that the neglect of meridional strain, an

assumption made in Ref. [21), would lead to an increase rather
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than decrease in the level of the yield-point load. Indeed, in

the present approach all work done by the meridional strain is

concentrated in the generalized tensile hinges and the corres-

ponding dissipation energy is given by (65). This term can

easily be made equal to zero by taking = 0. Substituting

a = b and = 0 into (66) we obtain a new solution

p 32 -2 12 4 2Po 1 + 15 5 q 5 q (71)

Load-deflection curves for few chosen values of the parameter a

are shown in Fig. 17 together with the solution due to Kondo and Pian.

The initial yield-point load is obtained from (71) by setting

q = 0:

P + 32 2p 1+-c a !l (72)
15 15

0

The above formula is identical to the one derived by Kondo

and Pian and the corresponding P - a curve clearly lies above

that given by (70), Fig. 16. Thus, the neglect of meridional

strain rate was offset by even larger increase of the dissipa-

tion due to the circumferential strain rate. With increasing

a, the contribution of dissipated energy in meridional direction

diminishes, illustrating a nature of the approximationintroduced

in replacing (13) by (14). Note that the solution (62) was derived

on the assumption that O = and this explains the excellent

correlation of the present solution with the rnore elaborate

3olution due to Kondo and Pian, which employs a full set of equations

describing moderately large deflection of shells.
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It is not in principle difficult to extend the present

solution to shells with intermediate values of the parameter a.

The P - a curve would first follow Eq. (70) and then converge

assymptotically to Eq. (62).

11. Effect of End Condition

According to the present analysis, the boundary conditions

are not felt by the shell until the outer hinge reaches the

support located at o". It is seen fror' (35) and (38) that this

occurs when deflections become

2 =0

P, , sin * = -(73)

For a shell under-central-point load, the width of the plastic

zone predicted by the approximate solution is b = 3Rh. From now

on the outer hinge remains fixed, and any further increase of w/h

is due to the diminishing of the width of the toroidal secticn b.

introducing the dimensionless parameter a b , the geometrical

relation becomes

2w _ p* 3 2 w* 3 2h R 2f R_ =f OL - +  (7 -a2 (

For fully clamped boundary conditions, the solution (37) with

two concentrated plastic hinges still applies, so that after

introducing (73) into (37) we have

P "* 1
= 2 - (a + -) - 1 (75)27TM 0  /3ah O

Equations (74) and (75) provide a parametric representaticn of the

load-deflection relationship at the terminal stage of the shell motion
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With a 0 the force blows up to infinity-Fig 18. This occurs

w _w** w* 3when h - h In reality the force level in shells

subjected to central point load is equal to the strength of the

inverted spherical shell in tension. An upper bound for this

force is

Ptens 
4R - (76)2 MoTr h

This is much higher than (75) with a = 1, but finite. For shells

compressed between rigid plates the formula (75) applies

multiplied by the coefficient 2. The force increases with a

approaching zero and indeed goes to infinity when the upper plate

comes in contact with the supporting plate. A typical loading

situation for the two cases described above is shown in Fin. 16 .

12. Conclusions

This paper presents a general methodology for predicting the

crush resistance of arbitrary rigid plastic shells of revolution

deforming in an axisymmetric mode. The implications of the condi-

tions of kinematic continuity, as well as the boundary conditions,

are discussed. Several practical problems are solved, including

a conical shell and a spherical shell crushed between rigid plates

and under boss loading, and a spherical cap under external uniform

pressure.

For the initial stage of deformation the structure has been

treated as a three dimensional body, in the spirit of Calladine's

approach [18], while in subsequent stages a simplification to this

approach has been suggested, which results in simple closed form

solutions useful for engineering applications. A good correlation
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was found with some eyisting solutions of similar problems obtained

through much lengthier calculations.

In all cases treated, the zone of plastic deformation was

found to be confined to a relatively narrow region. Also, the

level of the crushing force was shown to be quite insensitive to

the particular shape of that zone.

The present method makes it possible to study the crush

behavior of rotationally symmetric shells strengthened by circum-

ferential ring stiffeners. The stiffner acts initially as a

clamping ring until the force reaches a critical level. Then the

ring becomes a rigid boss. Thus the determination of the initial-

point load for a shell loaded by a rigid boss provides a basis

for studying the optimum design of stiffened plastic shells

- against crash. In the optimum design the rigidity of the stiffeners

must be compatible with the local crushing strength of the shell.

This problem will be studied in detail in a future publication.
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